update blog post content
continuous-integration/drone/push Build is passing Details

This commit is contained in:
James Ravenscroft 2022-01-14 17:25:23 +00:00
parent 4db50a370a
commit 797ab81b4a
2 changed files with 485 additions and 23 deletions

View File

@ -35,6 +35,8 @@ tags:
- [Defining the Interface with ELI5](#defining-the-interface-with-eli5)
- [Getting an Explanation](#getting-an-explanation-1)
- [ELI5 and a Remotely Hosted Model / API](#eli5-and-a-remotely-hosted-model--api)
- [Setting up](#setting-up)
- [Building a Remote Model Adapter](#building-a-remote-model-adapter)
@ -355,4 +357,59 @@ Et voila! Hopefully you will get some output that looks like the below:
{{<figure src="images/explanation_example.png" caption="The output of the explain functon should look something like this">}}
## ELI5 and a Remotely Hosted Model / API
## ELI5 and a Remotely Hosted Model / API
This one is quite fun and exciting. Since LIME is model agnostic, we can get an explanation for a remotely hosted model assuming we have access to
the full probability distribution over its labels (and assuming you have enough API credits to train your local model).
In this example I'm using Huggingface's [inference api](https://api-inference.huggingface.co/docs/python/html/quicktour.html) where they host transformer models on your behalf - you can pay to have your models run on GPUs for higher throughput. I made this guide with the free tier allowance which gives you 30k tokens per month - if you are using LIME with default settings you could easily eat through this whilst generating a single explanation so this is yet again a contrived example that gives you a taster of what is possible.
### Setting up
For this part of the tutorial you will need the Python [requests](https://docs.python-requests.org/en/latest/) library and we are also going to make use of [scipy](https://docs.scipy.org). You will also need a huggingface account and you will need to set up your API key as described in the [documentation](https://api-inference.huggingface.co/docs/python/html/quicktour.html).
### Building a Remote Model Adapter
Firstly we need to build a model adapter function that allows ELI5 to interface with huggingface's models.
```python
import json
import requests
MODEL="nlptown/bert-base-multilingual-uncased-sentiment"
API_TOKEN="YOUR API KEY HERE"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL}"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def query(payload):
data = json.dumps(payload)
response = requests.request("POST", API_URL, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def result_to_df(result):
rows = []
for result_row in result:
row = {}
for lbl_score in result_row:
row[lbl_score['label']] = lbl_score['score']
rows.append(row)
return pd.DataFrame(rows)
def remote_model_adapter(texts: List[str]):
all_scores = []
for text in texts:
data = query(text)
all_scores.extend(result_to_df(data).values)
return softmax(np.array(all_scores), axis=1)
```

View File

@ -1182,7 +1182,7 @@
"outputs": [],
"source": [
"import json\n",
"\n",
"from scipy.special import softmax\n",
"import requests\n",
"\n",
"MODEL=\"nlptown/bert-base-multilingual-uncased-sentiment\"\n",
@ -1297,35 +1297,440 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 136,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/james/miniconda3/envs/pgesg/lib/python3.7/site-packages/sklearn/base.py:213: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.\n",
" FutureWarning)\n"
]
},
{
"data": {
"text/html": [
"\n",
" <style>\n",
" table.eli5-weights tr:hover {\n",
" filter: brightness(85%);\n",
" }\n",
"</style>\n",
"\n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" <p style=\"margin-bottom: 0.5em; margin-top: 0em\">\n",
" <b>\n",
" \n",
" y=1 star\n",
" \n",
"</b>\n",
"\n",
" \n",
" (probability <b>0.001</b>, score <b>-7.683</b>)\n",
"\n",
"top features\n",
" </p>\n",
" \n",
" <table class=\"eli5-weights\"\n",
" style=\"border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto; margin-bottom: 2em;\">\n",
" <thead>\n",
" <tr style=\"border: none;\">\n",
" \n",
" <th style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\" title=\"Feature contribution already accounts for the feature value (for linear models, contribution = weight * feature value), and the sum of feature contributions is equal to the score or, for some classifiers, to the probability. Feature values are shown if &quot;show_feature_values&quot; is True.\">\n",
" Contribution<sup>?</sup>\n",
" </th>\n",
" \n",
" <th style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">Feature</th>\n",
" \n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 99.21%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -0.075\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" &lt;BIAS&gt;\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 80.00%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -7.608\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" Highlighted in text (sum)\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
"\n",
" </tbody>\n",
" </table>\n",
"\n",
" \n",
"\n",
"\n",
"\n",
" <p style=\"margin-bottom: 2.5em; margin-top:-0.5em;\">\n",
" <span style=\"background-color: hsl(0, 100.00%, 80.17%); opacity: 0.87\" title=\"-0.933\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 81.50%); opacity: 0.87\" title=\"0.845\">restaurant</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 62.35%); opacity: 0.98\" title=\"-2.333\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 66.81%); opacity: 0.95\" title=\"-1.948\">amazing</span><span style=\"opacity: 0.80\">, </span><span style=\"background-color: hsl(0, 100.00%, 93.07%); opacity: 0.82\" title=\"-0.208\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 79.39%); opacity: 0.88\" title=\"0.987\">quality</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 83.63%); opacity: 0.86\" title=\"-0.710\">of</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 92.60%); opacity: 0.82\" title=\"-0.228\">their</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 75.75%); opacity: 0.90\" title=\"1.244\">food</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 77.53%); opacity: 0.89\" title=\"-1.116\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 63.04%); opacity: 0.98\" title=\"-2.272\">exceptional</span><span style=\"opacity: 0.80\">. </span><span style=\"background-color: hsl(0, 100.00%, 60.00%); opacity: 1.00\" title=\"-2.543\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 69.65%); opacity: 0.93\" title=\"-1.714\">waiters</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 69.66%); opacity: 0.93\" title=\"1.713\">were</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 64.68%); opacity: 0.97\" title=\"2.129\">so</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 85.25%); opacity: 0.85\" title=\"-0.612\">polite</span><span style=\"opacity: 0.80\">.</span>\n",
" </p>\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" <p style=\"margin-bottom: 0.5em; margin-top: 0em\">\n",
" <b>\n",
" \n",
" y=2 stars\n",
" \n",
"</b>\n",
"\n",
" \n",
" (probability <b>0.021</b>, score <b>-3.995</b>)\n",
"\n",
"top features\n",
" </p>\n",
" \n",
" <table class=\"eli5-weights\"\n",
" style=\"border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto; margin-bottom: 2em;\">\n",
" <thead>\n",
" <tr style=\"border: none;\">\n",
" \n",
" <th style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\" title=\"Feature contribution already accounts for the feature value (for linear models, contribution = weight * feature value), and the sum of feature contributions is equal to the score or, for some classifiers, to the probability. Feature values are shown if &quot;show_feature_values&quot; is True.\">\n",
" Contribution<sup>?</sup>\n",
" </th>\n",
" \n",
" <th style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">Feature</th>\n",
" \n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 97.89%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -0.306\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" &lt;BIAS&gt;\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 87.95%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -3.689\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" Highlighted in text (sum)\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
"\n",
" </tbody>\n",
" </table>\n",
"\n",
" \n",
"\n",
"\n",
"\n",
" <p style=\"margin-bottom: 2.5em; margin-top:-0.5em;\">\n",
" <span style=\"background-color: hsl(120, 100.00%, 77.88%); opacity: 0.89\" title=\"1.091\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 77.55%); opacity: 0.89\" title=\"1.114\">restaurant</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 74.29%); opacity: 0.91\" title=\"-1.353\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 74.88%); opacity: 0.90\" title=\"1.309\">amazing</span><span style=\"opacity: 0.80\">, </span><span style=\"background-color: hsl(120, 100.00%, 76.34%); opacity: 0.89\" title=\"1.201\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 69.90%); opacity: 0.93\" title=\"-1.694\">quality</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 66.08%); opacity: 0.96\" title=\"-2.010\">of</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 76.23%); opacity: 0.90\" title=\"-1.209\">their</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 95.97%); opacity: 0.81\" title=\"-0.096\">food</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 63.19%); opacity: 0.98\" title=\"-2.259\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 86.06%); opacity: 0.84\" title=\"-0.564\">exceptional</span><span style=\"opacity: 0.80\">. </span><span style=\"background-color: hsl(120, 100.00%, 83.97%); opacity: 0.85\" title=\"0.689\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 69.15%); opacity: 0.94\" title=\"1.755\">waiters</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 83.11%); opacity: 0.86\" title=\"0.742\">were</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 87.33%); opacity: 0.84\" title=\"0.492\">so</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 83.30%); opacity: 0.86\" title=\"0.730\">polite</span><span style=\"opacity: 0.80\">.</span>\n",
" </p>\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" <p style=\"margin-bottom: 0.5em; margin-top: 0em\">\n",
" <b>\n",
" \n",
" y=3 stars\n",
" \n",
"</b>\n",
"\n",
" \n",
" (probability <b>0.858</b>, score <b>0.965</b>)\n",
"\n",
"top features\n",
" </p>\n",
" \n",
" <table class=\"eli5-weights\"\n",
" style=\"border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto; margin-bottom: 2em;\">\n",
" <thead>\n",
" <tr style=\"border: none;\">\n",
" \n",
" <th style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\" title=\"Feature contribution already accounts for the feature value (for linear models, contribution = weight * feature value), and the sum of feature contributions is equal to the score or, for some classifiers, to the probability. Feature values are shown if &quot;show_feature_values&quot; is True.\">\n",
" Contribution<sup>?</sup>\n",
" </th>\n",
" \n",
" <th style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">Feature</th>\n",
" \n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" <tr style=\"background-color: hsl(120, 100.00%, 94.90%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" +1.079\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" Highlighted in text (sum)\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 98.94%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -0.114\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" &lt;BIAS&gt;\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
"\n",
" </tbody>\n",
" </table>\n",
"\n",
" \n",
"\n",
"\n",
"\n",
" <p style=\"margin-bottom: 2.5em; margin-top:-0.5em;\">\n",
" <span style=\"background-color: hsl(120, 100.00%, 79.89%); opacity: 0.87\" title=\"0.953\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 65.83%); opacity: 0.96\" title=\"2.030\">restaurant</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 80.63%); opacity: 0.87\" title=\"0.903\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 89.89%); opacity: 0.83\" title=\"-0.356\">amazing</span><span style=\"opacity: 0.80\">, </span><span style=\"background-color: hsl(120, 100.00%, 85.21%); opacity: 0.85\" title=\"0.614\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 86.50%); opacity: 0.84\" title=\"0.539\">quality</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 83.13%); opacity: 0.86\" title=\"-0.741\">of</span><span style=\"opacity: 0.80\"> their </span><span style=\"background-color: hsl(120, 100.00%, 93.02%); opacity: 0.82\" title=\"0.210\">food</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 81.59%); opacity: 0.87\" title=\"-0.839\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 84.40%); opacity: 0.85\" title=\"-0.662\">exceptional</span><span style=\"opacity: 0.80\">. </span><span style=\"background-color: hsl(120, 100.00%, 78.63%); opacity: 0.88\" title=\"1.039\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 94.01%); opacity: 0.81\" title=\"0.169\">waiters</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 88.32%); opacity: 0.83\" title=\"0.438\">were</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 67.12%); opacity: 0.95\" title=\"1.922\">so</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 82.45%); opacity: 0.86\" title=\"-0.784\">polite</span><span style=\"opacity: 0.80\">.</span>\n",
" </p>\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" <p style=\"margin-bottom: 0.5em; margin-top: 0em\">\n",
" <b>\n",
" \n",
" y=4 stars\n",
" \n",
"</b>\n",
"\n",
" \n",
" (probability <b>0.016</b>, score <b>-4.281</b>)\n",
"\n",
"top features\n",
" </p>\n",
" \n",
" <table class=\"eli5-weights\"\n",
" style=\"border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto; margin-bottom: 2em;\">\n",
" <thead>\n",
" <tr style=\"border: none;\">\n",
" \n",
" <th style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\" title=\"Feature contribution already accounts for the feature value (for linear models, contribution = weight * feature value), and the sum of feature contributions is equal to the score or, for some classifiers, to the probability. Feature values are shown if &quot;show_feature_values&quot; is True.\">\n",
" Contribution<sup>?</sup>\n",
" </th>\n",
" \n",
" <th style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">Feature</th>\n",
" \n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 97.95%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -0.294\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" &lt;BIAS&gt;\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 87.28%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -3.987\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" Highlighted in text (sum)\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
"\n",
" </tbody>\n",
" </table>\n",
"\n",
" \n",
"\n",
"\n",
"\n",
" <p style=\"margin-bottom: 2.5em; margin-top:-0.5em;\">\n",
" <span style=\"opacity: 0.80\">the </span><span style=\"background-color: hsl(120, 100.00%, 98.68%); opacity: 0.80\" title=\"0.019\">restaurant</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 90.65%); opacity: 0.83\" title=\"-0.319\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 77.64%); opacity: 0.89\" title=\"1.108\">amazing</span><span style=\"opacity: 0.80\">, </span><span style=\"background-color: hsl(120, 100.00%, 84.03%); opacity: 0.85\" title=\"0.685\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 88.50%); opacity: 0.83\" title=\"-0.428\">quality</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 74.42%); opacity: 0.91\" title=\"-1.343\">of</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 95.05%); opacity: 0.81\" title=\"0.129\">their</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 64.97%); opacity: 0.97\" title=\"2.104\">food</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 94.62%); opacity: 0.81\" title=\"-0.145\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 97.42%); opacity: 0.80\" title=\"-0.051\">exceptional</span><span style=\"opacity: 0.80\">. </span><span style=\"background-color: hsl(0, 100.00%, 89.87%); opacity: 0.83\" title=\"-0.358\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 88.46%); opacity: 0.83\" title=\"0.431\">waiters</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 75.72%); opacity: 0.90\" title=\"-1.247\">were</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 70.82%); opacity: 0.93\" title=\"-1.621\">so</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 76.61%); opacity: 0.89\" title=\"-1.182\">polite</span><span style=\"opacity: 0.80\">.</span>\n",
" </p>\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" <p style=\"margin-bottom: 0.5em; margin-top: 0em\">\n",
" <b>\n",
" \n",
" y=5 stars\n",
" \n",
"</b>\n",
"\n",
" \n",
" (probability <b>0.104</b>, score <b>-2.343</b>)\n",
"\n",
"top features\n",
" </p>\n",
" \n",
" <table class=\"eli5-weights\"\n",
" style=\"border-collapse: collapse; border: none; margin-top: 0em; table-layout: auto; margin-bottom: 2em;\">\n",
" <thead>\n",
" <tr style=\"border: none;\">\n",
" \n",
" <th style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\" title=\"Feature contribution already accounts for the feature value (for linear models, contribution = weight * feature value), and the sum of feature contributions is equal to the score or, for some classifiers, to the probability. Feature values are shown if &quot;show_feature_values&quot; is True.\">\n",
" Contribution<sup>?</sup>\n",
" </th>\n",
" \n",
" <th style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">Feature</th>\n",
" \n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 98.58%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -0.173\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" &lt;BIAS&gt;\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
" <tr style=\"background-color: hsl(0, 100.00%, 91.69%); border: none;\">\n",
" <td style=\"padding: 0 1em 0 0.5em; text-align: right; border: none;\">\n",
" -2.170\n",
" </td>\n",
" <td style=\"padding: 0 0.5em 0 0.5em; text-align: left; border: none;\">\n",
" Highlighted in text (sum)\n",
" </td>\n",
" \n",
"</tr>\n",
" \n",
"\n",
" </tbody>\n",
" </table>\n",
"\n",
" \n",
"\n",
"\n",
"\n",
" <p style=\"margin-bottom: 2.5em; margin-top:-0.5em;\">\n",
" <span style=\"background-color: hsl(0, 100.00%, 75.16%); opacity: 0.90\" title=\"-1.288\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 89.18%); opacity: 0.83\" title=\"0.393\">restaurant</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 93.06%); opacity: 0.82\" title=\"0.208\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 83.68%); opacity: 0.86\" title=\"0.706\">amazing</span><span style=\"opacity: 0.80\">, </span><span style=\"background-color: hsl(0, 100.00%, 95.96%); opacity: 0.81\" title=\"-0.096\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 66.13%); opacity: 0.96\" title=\"2.005\">quality</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 84.99%); opacity: 0.85\" title=\"0.627\">of</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 88.21%); opacity: 0.83\" title=\"-0.444\">their</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 81.60%); opacity: 0.87\" title=\"-0.839\">food</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 90.47%); opacity: 0.83\" title=\"0.328\">was</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 71.27%); opacity: 0.92\" title=\"1.585\">exceptional</span><span style=\"opacity: 0.80\">. </span><span style=\"background-color: hsl(0, 100.00%, 80.47%); opacity: 0.87\" title=\"-0.914\">the</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 71.14%); opacity: 0.93\" title=\"1.595\">waiters</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 71.65%); opacity: 0.92\" title=\"-1.555\">were</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(0, 100.00%, 77.01%); opacity: 0.89\" title=\"-1.153\">so</span><span style=\"opacity: 0.80\"> </span><span style=\"background-color: hsl(120, 100.00%, 96.48%); opacity: 0.81\" title=\"0.079\">polite</span><span style=\"opacity: 0.80\">.</span>\n",
" </p>\n",
"\n",
" \n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
"\n"
],
"text/plain": [
"TextExplainer(char_based=False,\n",
" clf=SGDClassifier(alpha=0.001, loss='log', penalty='elasticnet',\n",
" random_state=RandomState(MT19937) at 0x7FE4409B88D0),\n",
" n_samples=20, random_state=42,\n",
" sampler=MaskingTextSamplers(random_state=RandomState(MT19937) at 0x7FE4409B88D0,\n",
" sampler_params=None,\n",
" token_pattern='(?u)\\\\b\\\\w+\\\\b',\n",
" weights=array([0.7, 0.3])),\n",
" token_pattern='(?u)\\\\b\\\\w+\\\\b',\n",
" vec=CountVectorizer(ngram_range=(1, 2),\n",
" token_pattern='(?u)\\\\b\\\\w+\\\\b'))"
"<IPython.core.display.HTML object>"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "display_data"
"output_type": "execute_result"
}
],
"source": [