tidy up tags
This commit is contained in:
parent
acb7ac03c0
commit
ad4cd5d78a
|
@ -4,8 +4,8 @@ author: James
|
|||
type: post
|
||||
date: 2015-06-28T10:36:28+00:00
|
||||
url: /2015/06/28/bedford-place-vintage-festival/
|
||||
categories:
|
||||
- Lindyhop
|
||||
tags:
|
||||
- lindyhop
|
||||
|
||||
format: video
|
||||
|
||||
|
|
|
@ -4,29 +4,25 @@ author: James
|
|||
type: post
|
||||
date: 2015-06-28T10:24:33+00:00
|
||||
url: /2015/06/28/tidying-up-xml-in-one-click/
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
tags:
|
||||
- processing
|
||||
- phd
|
||||
- sapienta
|
||||
- tidy
|
||||
- xml
|
||||
- python
|
||||
|
||||
---
|
||||
When I’m working on Partridge and SAPIENTA, I find myself dealing with a lot of badly formatted XML. I used to manually run _xmllint –format_ against every file before opening it but that gets annoying very quickly (even if you have it saved in your bash history). So I decided to write a Nemo script that does it automatically for me.
|
||||
|
||||
<pre lang="bash">#!/bin/sh
|
||||
|
||||
for xmlfile in $NEMO_SCRIPT_SELECTED_FILE_PATHS; do
|
||||
|
||||
if [[ $xmlfile == *.xml ]]
|
||||
then
|
||||
xmllint --format $xmlfile > $xmlfile.tmp
|
||||
rm $xmlfile
|
||||
mv $xmlfile.tmp $xmlfile
|
||||
fi
|
||||
done
|
||||
<pre lang="bash">#!/bin/sh
|
||||
|
||||
for xmlfile in $NEMO_SCRIPT_SELECTED_FILE_PATHS; do
|
||||
|
||||
if [[ $xmlfile == *.xml ]]
|
||||
then
|
||||
xmllint --format $xmlfile > $xmlfile.tmp
|
||||
rm $xmlfile
|
||||
mv $xmlfile.tmp $xmlfile
|
||||
fi
|
||||
done
|
||||
</pre>
|
||||
|
||||
Pop that in a file called “Tidy XML” in your ~/.local/share/nemo/scripts directory and when you inspect files with Nemo it should appear in the right click menu.
|
|
@ -4,20 +4,12 @@ author: James
|
|||
type: post
|
||||
date: 2015-07-15T19:33:29+00:00
|
||||
url: /2015/07/15/sssplit-improvements/
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
tags:
|
||||
- phd
|
||||
- demo
|
||||
- improvements
|
||||
- java
|
||||
- partridge
|
||||
- python
|
||||
- regex
|
||||
- sapienta
|
||||
- split
|
||||
- sssplit
|
||||
- test
|
||||
|
||||
---
|
||||
## Introduction
|
||||
|
|
|
@ -4,12 +4,8 @@ author: James
|
|||
type: post
|
||||
date: 2015-08-30T16:52:59+00:00
|
||||
url: /2015/08/30/cusp-challenge-week-2015/
|
||||
categories:
|
||||
- PhD
|
||||
tags:
|
||||
- cdt
|
||||
- cusp
|
||||
- warwick
|
||||
- phd
|
||||
|
||||
---
|
||||
<figure id="attachment_23" aria-describedby="caption-attachment-23" style="width: 300px" class="wp-caption alignright">[<img loading="lazy" class="wp-image-23 size-medium" src="https://i1.wp.com/brainsteam.co.uk/wp-content/uploads/2015/08/Warwick-1.jpg?resize=300%2C200&ssl=1" alt="" width="300" height="200" srcset="https://i1.wp.com/brainsteam.co.uk/wp-content/uploads/2015/08/Warwick-1.jpg?resize=300%2C200&ssl=1 300w, https://i1.wp.com/brainsteam.co.uk/wp-content/uploads/2015/08/Warwick-1.jpg?resize=1024%2C683&ssl=1 1024w, https://i1.wp.com/brainsteam.co.uk/wp-content/uploads/2015/08/Warwick-1.jpg?w=1320&ssl=1 1320w, https://i1.wp.com/brainsteam.co.uk/wp-content/uploads/2015/08/Warwick-1.jpg?w=1980&ssl=1 1980w" sizes="(max-width: 300px) 100vw, 300px" data-recalc-dims="1" />][1]<figcaption id="caption-attachment-23" class="wp-caption-text">Warwick CDT intake 2015: From left to right – at the front Jacques, Zakiyya, Corinne, Neha and myself. Rear: David, John, Stephen (CDT director), Mo, Vaggelis, Malkiat and Greg</figcaption></figure>
|
||||
|
|
|
@ -4,12 +4,9 @@ author: James
|
|||
type: post
|
||||
date: 2015-10-22T18:10:57+00:00
|
||||
url: /2015/10/22/a-week-in-austin-tx-watson-labs/
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- alchemy
|
||||
- taxonomy
|
||||
- watson
|
||||
- work
|
||||
|
||||
---
|
||||
At the beginning of the month, I was lucky enough to spend a month embedded in the Watson Labs team in Austin, TX. These mysterious and enigmatic members of the Watson family have a super secret bat-cave known as “The Garage” located on the IBM Austin site – to which access is prohibited for normal IBMers unless accompanied by a labs team member.
|
||||
|
|
|
@ -4,15 +4,11 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-01T19:50:52+00:00
|
||||
url: /2015/11/01/sapienta-web-service-and-cli/
|
||||
categories:
|
||||
- PhD
|
||||
tags:
|
||||
- docker
|
||||
- partridge
|
||||
- sapienta
|
||||
- script
|
||||
- web
|
||||
- websockets
|
||||
- phd
|
||||
|
||||
---
|
||||
Hoorah! After a number of weeks I’ve finally managed to get SAPIENTA running inside docker containers on our EBI cloud instance. You can try it out at <http://sapienta.papro.org.uk/>.
|
||||
|
|
|
@ -4,20 +4,13 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-02T21:07:28+00:00
|
||||
url: /2015/11/02/keynote-at-yds-2015-information-discovery-partridge-and-watson/
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
tags:
|
||||
- extraction
|
||||
- ibm
|
||||
- information
|
||||
- papers
|
||||
- work
|
||||
- information extraction
|
||||
- partridge
|
||||
- retrieval
|
||||
- scientific
|
||||
- sapienta
|
||||
- phd
|
||||
- watson
|
||||
- yds
|
||||
|
||||
---
|
||||
<div dir="ltr">
|
||||
Here is a recording of my recent keynote talk on the power of Natural Language processing through Watson and my academic/PhD topic – Partridge – at York Doctoral Symposium.
|
||||
|
|
|
@ -4,27 +4,10 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-16T18:25:39+00:00
|
||||
url: /2015/11/16/retrieve-and-rank-and-python/
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- api
|
||||
- cloud
|
||||
- custom
|
||||
- developer
|
||||
- ecosystem
|
||||
- fcselect
|
||||
- ibm
|
||||
- work
|
||||
- python
|
||||
- query
|
||||
- rank
|
||||
- ranker
|
||||
- retrieve
|
||||
- services
|
||||
- solr
|
||||
- train
|
||||
- watson
|
||||
- wdc
|
||||
|
||||
---
|
||||
## Introduction
|
||||
|
||||
|
|
|
@ -4,20 +4,9 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-17T21:41:09+00:00
|
||||
url: /2015/11/17/spellchecking-in-retrieve-and-rank/
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- checker
|
||||
- improvements
|
||||
- rank
|
||||
- retrieve
|
||||
- search
|
||||
- solr
|
||||
- spell
|
||||
- spelling
|
||||
- suggestions
|
||||
- tuning
|
||||
- watson
|
||||
- work
|
||||
|
||||
---
|
||||
### Introduction
|
||||
|
|
|
@ -4,15 +4,10 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-21T09:41:19+00:00
|
||||
url: /2015/11/21/scrolling-in-elasticsearch/
|
||||
categories:
|
||||
- PhD
|
||||
tags:
|
||||
- elasticsearch
|
||||
- lucene
|
||||
- python
|
||||
- results
|
||||
- scan
|
||||
- scroll
|
||||
- phd
|
||||
|
||||
---
|
||||
I know I’m doing a lot of flip-flopping between SOLR and Elastic at the moment – I’m trying to figure out key similarities and differences between them and where one is more suitable than the other.
|
||||
|
|
|
@ -4,15 +4,10 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-22T19:20:19+00:00
|
||||
url: /2015/11/22/freecite-python-wrapper/
|
||||
categories:
|
||||
- PhD
|
||||
tags:
|
||||
- citations
|
||||
- freecite
|
||||
- python
|
||||
- rcuk
|
||||
- ref
|
||||
- references
|
||||
- phd
|
||||
|
||||
---
|
||||
I’ve written a simple wrapper around the Brown University Citation parser [FreeCite][1]. I’m planning to use the service to pull out author names from references in REF impact studies and try to link them back to investigators listed on RCUK funding applications.
|
||||
|
|
|
@ -5,12 +5,12 @@ type: post
|
|||
date: 2015-11-28T10:57:14+00:00
|
||||
url: /2015/11/28/watson-home-automation/
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- automation
|
||||
- iot
|
||||
- raspberry-pi
|
||||
- watson
|
||||
- work
|
||||
|
||||
---
|
||||
I’ve recently been playing with trying to build a Watson powered home automation system using my Raspberry Pi and some other electronic bits that I have on hand.
|
||||
|
|
|
@ -4,14 +4,10 @@ author: James
|
|||
type: post
|
||||
date: 2015-11-29T14:59:06+00:00
|
||||
url: /2015/11/29/elasticsearch-turning-analysis-off-and-why-its-useful/
|
||||
categories:
|
||||
- PhD
|
||||
tags:
|
||||
- analysis
|
||||
- elasticsearch
|
||||
- indexing
|
||||
- python
|
||||
- schema
|
||||
- phd
|
||||
|
||||
---
|
||||
I have recently been playing with Elastic search a lot for my PhD and started trying to do some more complicated queries and pattern matching using the DSL syntax. I have an index on my local machine called impact_studies which contains all 6637 REF 2014 impact case studies in a JSON format. One of the fields is “UOA” which contains the title of the unit of impact that the case study belongs to. We recently identified the fact that we do not want to look at all units of impact (my PhD is around impact in science so domains such as Art History are largely irrelevent to me). Therefore I started trying to run queries like this:
|
||||
|
|
|
@ -6,17 +6,11 @@ date: 2016-03-29T08:50:29+00:00
|
|||
url: /2016/03/29/cognitive-quality-assurance-an-introduction/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"e20dc490dab8";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"22a2beb5a88a";s:6:"status";s:5:"draft";s:3:"url";s:43:"https://medium.com/@jamesravey/e20dc490dab8";}'
|
||||
categories:
|
||||
- Uncategorized
|
||||
- Work
|
||||
tags:
|
||||
- assurance
|
||||
- cognitive
|
||||
- cqa
|
||||
- machine learning
|
||||
- qa
|
||||
- quality
|
||||
- quality assurance
|
||||
- watson
|
||||
- work
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -6,12 +6,12 @@ date: 2016-05-01T11:28:13+00:00
|
|||
url: /2016/05/01/ibm-watson-its-for-data-scientists-too/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- data science
|
||||
- ibm
|
||||
- watson
|
||||
- work
|
||||
- event
|
||||
|
||||
---
|
||||
Last week, my colleague Olly and I gave a talk at a data science meetup on how [IBM Watson can be used for data science applications][1].
|
||||
|
@ -20,6 +20,5 @@ We had an amazing time and got some really great feedback from the event. We wil
|
|||
|
||||
I will also be writing a little bit more about the experiment I did around Core Scientific Concepts and Watson Natural Language Classifier in a future blog post.
|
||||
|
||||
|
||||
|
||||
[1]: https://skillsmatter.com/skillscasts/8076-ibm-watson-it-s-for-data-scientists-too
|
||||
[1]: https://skillsmatter.com/skillscasts/8076-ibm-watson-it-s-for-data-scientists-too
|
|
@ -7,19 +7,11 @@ url: /2016/05/29/cognitive-quality-assurance-pt-2-performance-metrics/
|
|||
featured_image: /wp-content/uploads/2016/05/Oma--825x510.png
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"1f1de4b3132e";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:96:"https://medium.com/@jamesravey/cognitive-quality-assurance-pt-2-performance-metrics-1f1de4b3132e";}'
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- cognitive
|
||||
- cqa
|
||||
- evaluation
|
||||
- learning
|
||||
- machine
|
||||
- rank
|
||||
- retrieval
|
||||
- retrieve
|
||||
- supervised
|
||||
- quality assurance
|
||||
- machine learning
|
||||
- watson
|
||||
- work
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -6,12 +6,9 @@ date: 2016-06-05T07:59:40+00:00
|
|||
url: /2016/06/05/blackgangpi-a-raspberry-pi-hack-at-blackgang-chine/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"360de275805d";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:94:"https://medium.com/@jamesravey/blackgangpi-a-raspberry-pi-hack-at-blackgang-chine-360de275805d";}'
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- cognitive
|
||||
- hackathon
|
||||
- ibm
|
||||
- event
|
||||
- work
|
||||
- watson
|
||||
|
||||
---
|
||||
|
|
|
@ -6,11 +6,9 @@ date: 2016-11-12T11:43:24+00:00
|
|||
url: /2016/11/12/the-builder-the-salesman-and-the-property-tycoon/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"45839adb0b2d";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:92:"https://medium.com/@jamesravey/the-builder-the-salesman-and-the-property-tycoon-45839adb0b2d";}'
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- buzzwords
|
||||
- funny
|
||||
- humour
|
||||
- work
|
||||
- machine learning
|
||||
|
||||
---
|
||||
|
|
|
@ -6,12 +6,11 @@ date: 2016-11-23T14:43:58+00:00
|
|||
url: /2016/11/23/timetrack-a-simple-time-tracking-application-for-developers/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- Open Source
|
||||
tags:
|
||||
- projects
|
||||
- python
|
||||
- time-tracking
|
||||
- open source
|
||||
|
||||
---
|
||||
I’ve written a small command line application for tracking my time on my PhD and other projects. We use Harvest at Filament which is great if you’ve got a huge team and want the complexity (and of course license charges) of an online cloud solution for time tracking.
|
||||
|
|
|
@ -7,13 +7,13 @@ url: /2016/11/27/we-need-to-talk-about-push-notifications-and-why-i-stopped-wear
|
|||
featured_image: /wp-content/uploads/2016/11/IMG_20161127_130808-e1480252170130-576x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"3a1b15a3f469";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:124:"https://medium.com/@jamesravey/we-need-to-talk-about-push-notifications-and-why-i-stopped-wearing-my-smartwatch-3a1b15a3f469";}'
|
||||
categories:
|
||||
- Work
|
||||
- PhD
|
||||
tags:
|
||||
- multi-tasking
|
||||
- notifications
|
||||
- planning
|
||||
- work
|
||||
- phd
|
||||
- meta
|
||||
|
||||
---
|
||||
I own a Pebble Steel which I got for Christmas a couple of years ago. I’ve been very happy with it so far. I can control my music player from my wrist, get notifications and a summary of my calender. Recently, however I’ve stopped wearing it. The reason is that constant streams of notifications stress me out, interrupt my workflow and not wearing it makes me feel more calm and in control and allows me to be more productive.
|
||||
|
|
|
@ -6,13 +6,12 @@ date: 2016-12-08T10:08:13+00:00
|
|||
url: /2016/12/08/ai-cant-solve-all-our-problems-but-that-doesnt-mean-it-isnt-intelligent/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"e3e315592001";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";s:117:"https://medium.com/@jamesravey/ai-cant-solve-all-our-problems-but-that-doesn-t-mean-it-isn-t-intelligent-e3e315592001";}'
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
tags:
|
||||
- AI
|
||||
- machine learning
|
||||
- philosophy
|
||||
- work
|
||||
- phd
|
||||
|
||||
---
|
||||
<figure id="attachment_150" aria-describedby="caption-attachment-150" style="width: 285px" class="wp-caption alignright"><img loading="lazy" class="wp-image-150 size-medium" src="https://i0.wp.com/brainsteam.co.uk/wp-content/uploads/2016/12/Thomas_Hobbes_portrait.jpg?resize=285%2C300&ssl=1" width="285" height="300" srcset="https://i0.wp.com/brainsteam.co.uk/wp-content/uploads/2016/12/Thomas_Hobbes_portrait.jpg?resize=285%2C300&ssl=1 285w, https://i0.wp.com/brainsteam.co.uk/wp-content/uploads/2016/12/Thomas_Hobbes_portrait.jpg?resize=768%2C810&ssl=1 768w, https://i0.wp.com/brainsteam.co.uk/wp-content/uploads/2016/12/Thomas_Hobbes_portrait.jpg?resize=971%2C1024&ssl=1 971w, https://i0.wp.com/brainsteam.co.uk/wp-content/uploads/2016/12/Thomas_Hobbes_portrait.jpg?w=1109&ssl=1 1109w" sizes="(max-width: 285px) 100vw, 285px" data-recalc-dims="1" /><figcaption id="caption-attachment-150" class="wp-caption-text">Thomas Hobbes, perhaps most famous for his thinking on western politics, was also thinking about how the human mind “computes things” 500 years ago.</figcaption></figure>
|
||||
|
|
|
@ -6,12 +6,11 @@ date: 2016-12-10T09:33:41+00:00
|
|||
url: /2016/12/10/timetrack-improvements/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- Open Source
|
||||
- PhD
|
||||
tags:
|
||||
- python
|
||||
- timetrack
|
||||
- open source
|
||||
- phd
|
||||
|
||||
---
|
||||
I’ve just added a couple of improvements to timetrack that allow you to append to existing time recordings (either with an amount like 15m or using live to time additional minutes spent and append them).
|
||||
|
|
|
@ -6,12 +6,11 @@ date: 2017-06-05T07:24:22+00:00
|
|||
url: /2017/06/05/exploring-web-archive-data-cdx-files/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- PhD
|
||||
-
|
||||
tags:
|
||||
- cdx
|
||||
- python
|
||||
- webarchive
|
||||
- PhD
|
||||
|
||||
---
|
||||
I have recently been working in partnership with [UK Web Archive][1] in order to identify and parse large amounts of historic news data for an NLP task that I will blog about in the future. The NLP portion of this task will surely present its own challenges, but for now there is the small matter of identifying news data amongst the noise of 60TB of [web archive dumps of the rest of the .UK top level domain.][1]
|
||||
|
|
|
@ -6,14 +6,13 @@ date: 2017-07-25T11:02:42+00:00
|
|||
url: /2017/07/25/dialect-sensitive-topic-models/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- Open Source
|
||||
- PhD
|
||||
|
||||
tags:
|
||||
- lda
|
||||
- machine learning
|
||||
- python
|
||||
- topic model
|
||||
- PhD
|
||||
- open source
|
||||
|
||||
---
|
||||
As part of my PhD I’m currently interested in topic models that can take into account the dialect of the writing. That is, how can we build a model that can compare topics discussed in different dialectical styles, such as scientific papers versus newspaper articles. If you’re new to the concept of topic modelling then [this article][1] can give you a quick primer.
|
||||
|
|
|
@ -7,15 +7,14 @@ url: /2017/08/03/182/
|
|||
featured_image: /wp-content/uploads/2017/08/cahier-spirale-825x510.png
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"5ce618eb3174";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:139:"https://medium.com/@jamesravey/as-the-cto-for-a-london-machine-learning-startup-and-a-phd-student-at-warwick-institute-for-the-5ce618eb3174";}'
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- evernote
|
||||
- filament
|
||||
- work
|
||||
- phd
|
||||
- knowledge management
|
||||
- markdown
|
||||
|
||||
- meta
|
||||
---
|
||||
<div>
|
||||
As the CTO for a <a href="http://filament.uk.com">London machine learning startup</a> and a <a href="https://www.wisc.warwick.ac.uk/">PhD student at Warwick Institute for the Science of Cities</a>, to say I’m busy is an understatement.
|
||||
|
|
|
@ -7,8 +7,8 @@ draft: true
|
|||
url: /?p=195
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"6e9abb882f26";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:86:"https://medium.com/@jamesravey/machine-learning-and-hardware-requirements-6e9abb882f26";}'
|
||||
categories:
|
||||
- Uncategorized
|
||||
tags:
|
||||
- machine learning
|
||||
|
||||
---
|
||||
_**With recent advances in machine learning techniques, vendors like [Nvidia][1], [Intel][2], [AMD][3] and [IBM][3] are announcing hardware offerings specifically tailored around machine learning. In this post we examine the key differences between “traditional” software and machine learning software and why those differences necessitate a new type of hardware stack.**_
|
||||
|
|
|
@ -7,11 +7,11 @@ draft: true
|
|||
url: /?p=212
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";N;}'
|
||||
categories:
|
||||
- SpaCy
|
||||
|
||||
tags:
|
||||
- nlp
|
||||
- python
|
||||
- phd
|
||||
|
||||
---
|
||||
Recently I have been working on a project that involves trawling full text newspaper articles from the JISC UK Web Domain Dataset – covering all websites with a .uk domain suffix from 1996 to 2013. As you can imagine, this task is pretty gargantuan and the archives themselves are over 27 Terabytes in size (that’s enough space to store 5000 high definition movies).
|
||||
|
|
|
@ -6,11 +6,10 @@ date: 2018-01-27T10:09:34+00:00
|
|||
url: /2018/01/27/how-i-became-a-gopher/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"452cd617afb4";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:95:"https://medium.com/@jamesravey/how-i-became-a-gopher-and-learned-myself-an-angular-452cd617afb4";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- chatbots
|
||||
- filament
|
||||
- work
|
||||
- golang
|
||||
|
||||
---
|
||||
|
|
|
@ -6,12 +6,11 @@ date: 2018-03-21T11:26:27+00:00
|
|||
url: /2018/03/21/re-using-machine-learning-models-and-the-no-free-lunch-theorem/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"dd5196577b34";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:106:"https://medium.com/@jamesravey/re-using-machine-learning-models-and-the-no-free-lunch-theorem-dd5196577b34";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- machine-learning
|
||||
- ai
|
||||
|
||||
- work
|
||||
---
|
||||
## Why re-use machine learning models?
|
||||
|
||||
|
|
|
@ -6,11 +6,11 @@ date: 2018-04-05T13:08:51+00:00
|
|||
url: /2018/04/05/phd-mini-sabbaticals/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"78e62379c12b";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:74:"https://medium.com/@jamesravey/part-time-phd-mini-sabbaticals-78e62379c12b";}'
|
||||
categories:
|
||||
- PhD
|
||||
|
||||
tags:
|
||||
- productivity
|
||||
- sabbatical
|
||||
- meta
|
||||
- phd
|
||||
|
||||
---
|
||||
Avid readers amongst you will know that I’m currently in the third year of my PhD in Computational Linguistics at the University of Warwick whilst also serving as CTO at [Filament][1]. An incredibly exciting pair of positions that certainly have their challenges and would be untenable without an incredibly supportive set of PhD supervisors ([Amanda Clare][2] and [Maria Liakata][3]) and an equally supportive and understanding pair of company directors ([Phil and Doug][4]). Of course I have to shout out to my fiancee Amy who also puts up with a lot when I’m stressed out or I have to work weekends.
|
||||
|
|
|
@ -7,13 +7,11 @@ url: /2018/04/13/programmatically-downloading-open-access-papers/
|
|||
featured_image: /wp-content/uploads/2018/04/6216334720_54e29fc13c_o-825x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"9cbbb57ab932";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:91:"https://medium.com/@jamesravey/programmatically-downloading-open-access-papers-9cbbb57ab932";}'
|
||||
categories:
|
||||
- Open Source
|
||||
- PhD
|
||||
tags:
|
||||
- open access
|
||||
- scientific papers
|
||||
- unpaywall
|
||||
- Open Source
|
||||
- phd
|
||||
|
||||
---
|
||||
_<a href="https://www.flickr.com/photos/seanhobson/6216334720/in/photolist-atjkJQ-QuYgDA-cb9bGo-4o84DP-9GAeQ5-5dopRY-hyQV19-ngTMst-4rRwgg-qQr5Sy-e4XhCg-mQJpZ-6ttPLT-6zQxh2-dsE6bM-qQcUxd-6msKYB-4HRo5J-8W2ryV-4B5rRC-xj9C8-2V5HKa-7zS5wE-Ldsdy-bwMFxR-nibhxt-5mKLS5-5m2URM-7CsC9C-4nJ5jt-a4mQik-6GPYgf-cb9c8s-363XxR-8R4jGd-4qHxrv-T4A8wx-T1NyJG-4tR45P-f5bde-4tV62J-cDEZ9L-Te2m9S-NLeKd-orGJh5-4j53Za-T4Abnn-fqPY88-T1NwPE-7deVVp" target="_blank" rel="noopener">(Cover image “Unlocked” by Sean Hobson)</a>_
|
||||
|
|
|
@ -7,11 +7,11 @@ url: /2018/05/13/gpus-are-not-just-for-images-any-more/
|
|||
featured_image: /wp-content/uploads/2018/05/Video-card-825x510.png
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"9ce53222d3c0";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";s:81:"https://medium.com/@jamesravey/gpus-are-not-just-for-images-any-more-9ce53222d3c0";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- gpu
|
||||
- machine learning
|
||||
- work
|
||||
|
||||
---
|
||||
As a machine learning professional specialising in computational linguistics (helping machines to extract meaning from human text), I have confused people on multiple occasions by suggesting that their document processing problem could be solved by neural networks trained using a Graphics Processing Unit (GPU). You’d be well within your rights to be confused. To the uninitiated what I just said was “Let’s solve this problem involving reading lots of text by building a system that runs on specialised computer chips designed specifically to render images at high speed”.
|
||||
|
|
|
@ -7,15 +7,11 @@ url: /2018/10/18/dont-forget-your-life-jacket-the-dangers-of-diving-in-deep-at-t
|
|||
featured_image: /wp-content/uploads/2018/10/livesaver-825x510.png
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"735db0cf9d14";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";s:137:"https://medium.com/@jamesravey/dont-forget-your-life-jacket-the-dangers-of-diving-in-deep-at-the-deep-end-with-deep-learning-735db0cf9d14";}'
|
||||
categories:
|
||||
|
||||
tags:
|
||||
- machine learning
|
||||
- PhD
|
||||
- Work
|
||||
tags:
|
||||
- deep learning
|
||||
- filament
|
||||
- machine learning
|
||||
- neural networks
|
||||
|
||||
---
|
||||
<div>
|
||||
<h1>
|
||||
|
|
|
@ -6,14 +6,14 @@ date: 2018-10-20T10:09:41+00:00
|
|||
url: /2018/10/20/uploading-huge-files-to-gitea/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- PhD
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- devops
|
||||
- docker
|
||||
- git
|
||||
- lfs
|
||||
- PhD
|
||||
- Work
|
||||
|
||||
---
|
||||
I recently stumbled upon and fell in love with [Gitea][1] – a lightweight self-hosted Github and Gitlab alternative written in the Go programming language. One of my favourite things about it – other than the speed and efficiency that mean [you can even run it on a raspberry pi][2] – is the built in LFS support. For the unfamiliar, [LFS is a protocol initially introduced by GitHub][3] that allows users to version control large binary files – something that Git is traditionally pretty poor at.
|
||||
|
|
|
@ -6,12 +6,12 @@ date: 2018-11-07T07:40:45+00:00
|
|||
url: /2018/11/07/why-is-tmux-crashing-on-start/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:4:"none";s:3:"url";N;}'
|
||||
categories:
|
||||
- Open Source
|
||||
|
||||
tags:
|
||||
- linux
|
||||
- script
|
||||
- tmux
|
||||
- Open Source
|
||||
|
||||
---
|
||||
I spent several hours trying to get to the bottom of why tmux was crashing as soon as I ran it on Fedora. It turns out there’s a simple fix. When tmux starts it uses /dev/ptmx to create a new TTY (virtual terminal) that the user can interact with. If your user does not have permission to access this device then tmux will silently die. A good way to verify this is to try running [screen][1] too.
|
||||
|
|
|
@ -6,14 +6,12 @@ date: 2018-12-09T10:36:34+00:00
|
|||
url: /2018/12/09/🤐🤐can-bots-keep-secrets-the-future-of-chatbot-security-and-conversational-hacks/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:3:"yes";s:2:"id";s:12:"8be78d43ff66";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";s:121:"https://medium.com/@jamesravey/can-bots-keep-secrets-the-future-of-chatbot-security-and-conversational-hacks-8be78d43ff66";}'
|
||||
categories:
|
||||
- Work
|
||||
tags:
|
||||
- machine-learning
|
||||
- bots
|
||||
- chatbots
|
||||
- nlp
|
||||
- security
|
||||
- Work
|
||||
|
||||
---
|
||||
**As adoption of chatbots and conversational interfaces continues to grow, how will businesses keep their brand safe and their customer’s data safer?**
|
||||
|
|
|
@ -7,12 +7,10 @@ url: /2019/01/06/applied-ai-in-2019/
|
|||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:3:"yes";s:2:"id";s:12:"d1473c0a48ca";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";s:62:"https://medium.com/@jamesravey/applied-ai-in-2019-d1473c0a48ca";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- AI
|
||||
- futurism
|
||||
- nlp
|
||||
- vision
|
||||
- Work
|
||||
|
||||
---
|
||||
<p style="font-size:0">
|
||||
|
|
|
@ -6,13 +6,12 @@ date: 2019-01-15T18:14:16+00:00
|
|||
url: /2019/01/15/spacy-link-or-how-not-to-keep-downloading-the-same-files-over-and-over/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"11a44e1c247f";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:114:"https://medium.com/@jamesravey/spacy-link-or-how-not-to-keep-downloading-the-same-files-over-and-over-11a44e1c247f";}'
|
||||
categories:
|
||||
- Work
|
||||
- PhD
|
||||
|
||||
tags:
|
||||
- nlp
|
||||
- python
|
||||
|
||||
- work
|
||||
- phd
|
||||
---
|
||||
If you’re a frequent user of spacy and virtualenv you might well be all too familiar with the following:
|
||||
|
||||
|
|
|
@ -7,15 +7,13 @@ url: /2019/04/24/why-im-excited-about-kubernetes-google-anthos-the-future-of-ent
|
|||
featured_image: /wp-content/uploads/2019/04/cargo-cargo-container-city-262353-825x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:3:"yes";s:2:"id";N;s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:12:"6fc55de34f53";s:6:"status";s:6:"public";s:3:"url";N;}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- devops
|
||||
- docker
|
||||
- filament
|
||||
- google
|
||||
- kubernetes
|
||||
|
||||
- work
|
||||
---
|
||||
### _Filament build and deploy enterprise AI applications on behalf of incumbent institutions in finance, biotech, facilities management and other sectors. James Ravenscroft, CTO at Filament, writes about the challenges of enterprise software deployment and the opportunities presented by Kubernetes and Google’s Anthos offering._
|
||||
|
||||
|
|
|
@ -7,14 +7,13 @@ url: /2019/06/20/how-can-ai-practitioners-reduce-our-carbon-footprint/
|
|||
featured_image: /wp-content/uploads/2019/06/ash-blaze-burn-266487-825x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";N;s:10:"author_url";N;s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";N;s:2:"id";N;s:21:"follower_notification";N;s:7:"license";N;s:14:"publication_id";N;s:6:"status";N;s:3:"url";N;}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- AI
|
||||
- climate catastrophe
|
||||
- climate change
|
||||
- machine learning
|
||||
- nlp
|
||||
- work
|
||||
|
||||
---
|
||||
In recent weeks and months the impending global climate catastrophe has been at the forefront of many peoples’ minds. Thanks to movements like [Extinction Rebellion][1] and high profile environmentalists like [Greta Thunberg][2] and [David Attenborough][3] as well as damning reports from the [IPCC][4], it finally feels like momentum is building behind significant reduction of carbon emissions. That said, knowing how we can help on an individual level beyond driving and flying less still feels very overwhelming.
|
||||
|
|
|
@ -6,12 +6,12 @@ date: 2020-02-02T14:40:46+00:00
|
|||
url: /2020/02/02/pytorch-1-x-x-and-pipenv-and-specific-versions-of-cuda/
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:2:"no";s:2:"id";s:12:"8e038847a808";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:98:"https://medium.com/@jamesravey/pytorch-1-x-x-and-pipenv-and-specific-versions-of-cuda-8e038847a808";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- developer
|
||||
- projects
|
||||
- python
|
||||
- work
|
||||
|
||||
---
|
||||
I recently ran into an issue where the newest version of Torch (as of writing 1.4.0) requires a newer version of CUDA/Nvidia Drivers than I have installed.
|
||||
|
|
|
@ -7,11 +7,11 @@ url: /2020/09/04/dark-recommendation-engines-algorithmic-curation-as-part-of-a-h
|
|||
featured_image: /wp-content/uploads/2020/09/maxresdefault-825x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:3:"yes";s:2:"id";s:12:"2969b63de7ec";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:130:"https://medium.com/@jamesravey/dark-recommendation-engines-algorithmic-curation-as-part-of-a-healthy-information-diet-2969b63de7ec";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- machine-learning
|
||||
- ai
|
||||
- work
|
||||
|
||||
---
|
||||
### In an ever-growing digital landscape filled with more content than a person can consume in their lifetime, recommendation engines are a blessing but can also be a a curse and understanding their strengths and weaknesses is a vital skill as part of a balanced media diet.
|
||||
|
|
|
@ -7,12 +7,12 @@ url: /2020/11/27/dvc-and-backblaze-b2-for-reliable-reproducible-data-science/
|
|||
featured_image: /wp-content/uploads/2020/11/pexels-panumas-nikhomkhai-1148820-825x510.jpg
|
||||
medium_post:
|
||||
- 'O:11:"Medium_Post":11:{s:16:"author_image_url";s:69:"https://cdn-images-1.medium.com/fit/c/200/200/0*naYvMn9xdbL5qlkJ.jpeg";s:10:"author_url";s:30:"https://medium.com/@jamesravey";s:11:"byline_name";N;s:12:"byline_email";N;s:10:"cross_link";s:3:"yes";s:2:"id";s:12:"d44d231b648f";s:21:"follower_notification";s:3:"yes";s:7:"license";s:19:"all-rights-reserved";s:14:"publication_id";s:2:"-1";s:6:"status";s:6:"public";s:3:"url";s:103:"https://medium.com/@jamesravey/dvc-and-backblaze-b2-for-reliable-reproducible-data-science-d44d231b648f";}'
|
||||
categories:
|
||||
- Work
|
||||
|
||||
tags:
|
||||
- data science
|
||||
- devops
|
||||
- machine learning
|
||||
- work
|
||||
|
||||
---
|
||||
## Introduction
|
||||
|
|
Loading…
Reference in New Issue