brainsteam.co.uk/2015/11/02/keynote-at-yds-2015-informa.../index.html

182 lines
9.6 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge"><title>Keynote at YDS 2015: Information Discovery, Partridge and Watson - Brainsteam</title><meta name="viewport" content="width=device-width, initial-scale=1">
<meta itemprop="name" content="Keynote at YDS 2015: Information Discovery, Partridge and Watson">
<meta itemprop="description" content="Here is a recording of my recent keynote talk on the power of Natural Language processing through Watson and my academic/PhD topic &#8211; Partridge &#8211; at York Doctoral Symposium. 0-11 minutes &#8211; history of mankind, invention and the acceleration of scientific progress (warming people to the idea that farming out your scientific reading to a computer is a much better idea than trying to read every paper written) 11-26 minutes &#8211; My personal academic work &#8211; scientific paper annotation and cognitive scientific research using NLP 26- 44 minutes &#8211; Watson &#8211; Jeopardy, MSK and Ecosystem 44 &#8211; 48 minutes Q&A on Watson and Partridge Please dont cringe too much at my technical explanation of Watson especially those of you who know much more about WEA and the original DeepQA setup than I do!"><meta itemprop="datePublished" content="2015-11-02T21:07:28&#43;00:00" />
<meta itemprop="dateModified" content="2015-11-02T21:07:28&#43;00:00" />
<meta itemprop="wordCount" content="177">
<meta itemprop="keywords" content="extraction,ibm,information,papers,partridge,retrieval,scientific,watson,yds," /><meta property="og:title" content="Keynote at YDS 2015: Information Discovery, Partridge and Watson" />
<meta property="og:description" content="Here is a recording of my recent keynote talk on the power of Natural Language processing through Watson and my academic/PhD topic &#8211; Partridge &#8211; at York Doctoral Symposium. 0-11 minutes &#8211; history of mankind, invention and the acceleration of scientific progress (warming people to the idea that farming out your scientific reading to a computer is a much better idea than trying to read every paper written) 11-26 minutes &#8211; My personal academic work &#8211; scientific paper annotation and cognitive scientific research using NLP 26- 44 minutes &#8211; Watson &#8211; Jeopardy, MSK and Ecosystem 44 &#8211; 48 minutes Q&A on Watson and Partridge Please dont cringe too much at my technical explanation of Watson especially those of you who know much more about WEA and the original DeepQA setup than I do!" />
<meta property="og:type" content="article" />
<meta property="og:url" content="https://brainsteam.co.uk/2015/11/02/keynote-at-yds-2015-information-discovery-partridge-and-watson/" /><meta property="article:section" content="posts" />
<meta property="article:published_time" content="2015-11-02T21:07:28&#43;00:00" />
<meta property="article:modified_time" content="2015-11-02T21:07:28&#43;00:00" />
<meta name="twitter:card" content="summary"/>
<meta name="twitter:title" content="Keynote at YDS 2015: Information Discovery, Partridge and Watson"/>
<meta name="twitter:description" content="Here is a recording of my recent keynote talk on the power of Natural Language processing through Watson and my academic/PhD topic &#8211; Partridge &#8211; at York Doctoral Symposium. 0-11 minutes &#8211; history of mankind, invention and the acceleration of scientific progress (warming people to the idea that farming out your scientific reading to a computer is a much better idea than trying to read every paper written) 11-26 minutes &#8211; My personal academic work &#8211; scientific paper annotation and cognitive scientific research using NLP 26- 44 minutes &#8211; Watson &#8211; Jeopardy, MSK and Ecosystem 44 &#8211; 48 minutes Q&A on Watson and Partridge Please dont cringe too much at my technical explanation of Watson especially those of you who know much more about WEA and the original DeepQA setup than I do!"/>
<link href='https://fonts.googleapis.com/css?family=Playfair+Display:700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" media="screen" href="https://brainsteam.co.uk/css/normalize.css" />
<link rel="stylesheet" type="text/css" media="screen" href="https://brainsteam.co.uk/css/main.css" />
<link id="dark-scheme" rel="stylesheet" type="text/css" href="https://brainsteam.co.uk/css/dark.css" />
<script src="https://brainsteam.co.uk/js/feather.min.js"></script>
<script src="https://brainsteam.co.uk/js/main.js"></script>
</head>
<body>
<div class="container wrapper">
<div class="header">
<div class="avatar">
<a href="https://brainsteam.co.uk/">
<img src="/images/avatar.png" alt="Brainsteam" />
</a>
</div>
<h1 class="site-title"><a href="https://brainsteam.co.uk/">Brainsteam</a></h1>
<div class="site-description"><p>The irregular mental expulsions of a PhD student and CTO of Filament, my views are my own and do not represent my employers in any way.</p><nav class="nav social">
<ul class="flat"><li><a href="https://twitter.com/jamesravey/" title="Twitter" rel="me"><i data-feather="twitter"></i></a></li><li><a href="https://github.com/ravenscroftj" title="Github" rel="me"><i data-feather="github"></i></a></li><li><a href="/index.xml" title="RSS" rel="me"><i data-feather="rss"></i></a></li></ul>
</nav></div>
<nav class="nav">
<ul class="flat">
<li>
<a href="/">Home</a>
</li>
<li>
<a href="/tags">Tags</a>
</li>
<li>
<a href="https://jamesravey.me">About Me</a>
</li>
</ul>
</nav>
</div>
<div class="post">
<div class="post-header">
<div class="meta">
<div class="date">
<span class="day">02</span>
<span class="rest">Nov 2015</span>
</div>
</div>
<div class="matter">
<h1 class="title">Keynote at YDS 2015: Information Discovery, Partridge and Watson</h1>
</div>
</div>
<div class="markdown">
<div dir="ltr">
Here is a recording of my recent keynote talk on the power of Natural Language processing through Watson and my academic/PhD topic &#8211; Partridge &#8211; at York Doctoral Symposium.
</div>
<div dir="ltr">
</div>
<div dir="ltr">
<div class="jetpack-video-wrapper">
<span class="embed-youtube" style="text-align:center; display: block;"><iframe class='youtube-player' width='660' height='372' src='https://www.youtube.com/embed/L4g4F9UDK64?version=3&#038;rel=1&#038;showsearch=0&#038;showinfo=1&#038;iv_load_policy=1&#038;fs=1&#038;hl=en-US&#038;autohide=2&#038;wmode=transparent' allowfullscreen='true' style='border:0;' sandbox='allow-scripts allow-same-origin allow-popups allow-presentation'></iframe></span>
</div>
</div>
<li dir="ltr">
0-11 minutes &#8211; history of mankind, invention and the acceleration of scientific progress (warming people to the idea that farming out your scientific reading to a computer is a much better idea than trying to read every paper written)
</li>
<li dir="ltr">
11-26 minutes &#8211; My personal academic work &#8211; scientific paper annotation and cognitive scientific research using NLP
</li>
<li dir="ltr">
26- 44 minutes &#8211; Watson &#8211; Jeopardy, MSK and Ecosystem
</li>
<li dir="ltr">
44 &#8211; 48 minutes Q&A on Watson and Partridge
</li>
<p>Please dont cringe too much at my technical explanation of Watson especially those of you who know much more about WEA and the original DeepQA setup than I do! This was me after a few days of reading the original 2011 and 2012 papers and making copious notes!</p>
<div dir="ltr">
</div>
<div dir="ltr">
(Equally please don&#8217;t cringe too much about my history of US Presidents @ 37:30- I got Roosevelt and Reagan mixed up in my head!)
</div>
<div dir="ltr">
</div>
<div dir="ltr">
</div>
<p> </p>
<p> </p>
</div>
<div class="tags">
<ul class="flat">
<li><a href="/tags/extraction">extraction</a></li>
<li><a href="/tags/ibm">ibm</a></li>
<li><a href="/tags/information">information</a></li>
<li><a href="/tags/papers">papers</a></li>
<li><a href="/tags/partridge">partridge</a></li>
<li><a href="/tags/retrieval">retrieval</a></li>
<li><a href="/tags/scientific">scientific</a></li>
<li><a href="/tags/watson">watson</a></li>
<li><a href="/tags/yds">yds</a></li>
</ul>
</div><div id="disqus_thread"></div>
<script type="text/javascript">
(function () {
if (window.location.hostname == "localhost")
return;
var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
var disqus_shortname = 'brainsteam';
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<noscript>Please enable JavaScript to view the </a></noscript>
<a href="http://disqus.com/" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
</div>
</div>
<div class="footer wrapper">
<nav class="nav">
<div>2021 © James Ravenscroft 2020 | <a href="https://github.com/knadh/hugo-ink">Ink</a> theme on <a href="https://gohugo.io">Hugo</a></div>
</nav>
</div>
<script type="application/javascript">
var doNotTrack = false;
if (!doNotTrack) {
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-186263385-1', 'auto');
ga('send', 'pageview');
}
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script>feather.replace()</script>
</body>
</html>